41 research outputs found

    MedCATTrainer: A biomedical free text annotation interface with active learning and research use case specific customisation

    Get PDF
    We present MedCATTrainer1 an interface for building, improving and customising a given Named Entity Recognition and Linking (NER+L) model for biomedical domain text. NER+L is often used as a first step in deriving value from clinical text. Collecting labelled data for training models is difficult due to the need for specialist domain knowledge. MedCATTrainer offers an interactive web-interface to inspect and improve recognised entities from an underlying NER+L model via active learning. Secondary use of data for clinical research often has task and context specific criteria. MedCATTrainer provides a further interface to define and collect supervised learning training data for researcher specific use cases. Initial results suggest our approach allows for efficient and accurate collection of research use case specific training data

    ACE-inhibitors and Angiotensin-2 Receptor Blockers are not associated with severe SARS-COVID19 infection in a multi-site UK acute Hospital Trust

    Get PDF
    Aims: The SARS‐CoV‐2 virus binds to the angiotensin‐converting enzyme 2 (ACE2) receptor for cell entry. It has been suggested that angiotensin‐converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB), which are commonly used in patients with hypertension or diabetes and may raise tissue ACE2 levels, could increase the risk of severe COVID‐19 infection. Methods and results: We evaluated this hypothesis in a consecutive cohort of 1200 acute inpatients with COVID‐19 at two hospitals with a multi‐ethnic catchment population in London (UK). The mean age was 68 ± 17 years (57% male) and 74% of patients had at least one comorbidity. Overall, 415 patients (34.6%) reached the primary endpoint of death or transfer to a critical care unit for organ support within 21 days of symptom onset. A total of 399 patients (33.3%) were taking ACEi or ARB. Patients on ACEi/ARB were significantly older and had more comorbidities. The odds ratio for the primary endpoint in patients on ACEi and ARB, after adjustment for age, sex and co‐morbidities, was 0.63 (95% confidence interval 0.47–0.84, P < 0.01). Conclusions: There was no evidence for increased severity of COVID‐19 in hospitalised patients on chronic treatment with ACEi or ARB. A trend towards a beneficial effect of ACEi/ARB requires further evaluation in larger meta‐analyses and randomised clinical trials

    Multi-domain clinical natural language processing with MedCAT: The Medical Concept Annotation Toolkit

    Get PDF
    Electronic health records (EHR) contain large volumes of unstructured text, requiring the application of information extraction (IE) technologies to enable clinical analysis. We present the open source Medical Concept Annotation Toolkit (MedCAT) that provides: (a) a novel self-supervised machine learning algorithm for extracting concepts using any concept vocabulary including UMLS/SNOMED-CT; (b) a feature-rich annotation interface for customizing and training IE models; and (c) integrations to the broader CogStack ecosystem for vendor-agnostic health system deployment. We show improved performance in extracting UMLS concepts from open datasets (F1:0.448-0.738 vs 0.429-0.650). Further real-world validation demonstrates SNOMED-CT extraction at 3 large London hospitals with self-supervised training over ∌8.8B words from ∌17M clinical records and further fine-tuning with ∌6K clinician annotated examples. We show strong transferability (F1 > 0.94) between hospitals, datasets and concept types indicating cross-domain EHR-agnostic utility for accelerated clinical and research use cases

    Regional performance variation in external validation of four prediction models for severity of COVID-19 at hospital admission: An observational multi-centre cohort study

    Get PDF
    Background Prediction models should be externally validated to assess their performance before implementation. Several prediction models for coronavirus disease-19 (COVID-19) have been published. This observational cohort study aimed to validate published models of severity for hospitalized patients with COVID-19 using clinical and laboratory predictors. Methods Prediction models fitting relevant inclusion criteria were chosen for validation. The outcome was either mortality or a composite outcome of mortality and ICU admission (severe disease). 1295 patients admitted with symptoms of COVID-19 at Kings Cross Hospital (KCH) in London, United Kingdom, and 307 patients at Oslo University Hospital (OUH) in Oslo, Norway were included. The performance of the models was assessed in terms of discrimination and calibration. Results We identified two models for prediction of mortality (referred to as Xie and Zhang1) and two models for prediction of severe disease (Allenbach and Zhang2). The performance of the models was variable. For prediction of mortality Xie had good discrimination at OUH with an area under the receiver-operating characteristic (AUROC) 0.87 [95% confidence interval (CI) 0.79–0.95] and acceptable discrimination at KCH, AUROC 0.79 [0.76–0.82]. In prediction of severe disease, Allenbach had acceptable discrimination (OUH AUROC 0.81 [0.74–0.88] and KCH AUROC 0.72 [0.68–0.75]). The Zhang models had moderate to poor discrimination. Initial calibration was poor for all models but improved with recalibration. Conclusions The performance of the four prediction models was variable. The Xie model had the best discrimination for mortality, while the Allenbach model had acceptable results for prediction of severe disease

    Inpatient COVID-19 mortality has reduced over time: Results from an observational cohort

    Get PDF
    BACKGROUND: The Covid-19 pandemic in the United Kingdom has seen two waves; the first starting in March 2020 and the second in late October 2020. It is not known whether outcomes for those admitted with severe Covid were different in the first and second waves. METHODS: The study population comprised all patients admitted to a 1,500-bed London Hospital Trust between March 2020 and March 2021, who tested positive for Covid-19 by PCR within 3-days of admissions. Primary outcome was death within 28-days of admission. Socio-demographics (age, sex, ethnicity), hypertension, diabetes, obesity, baseline physiological observations, CRP, neutrophil, chest x-ray abnormality, remdesivir and dexamethasone were incorporated as co-variates. Proportional subhazards models compared mortality risk between wave 1 and wave 2. Cox-proportional hazard model with propensity score adjustment were used to compare mortality in patients prescribed remdesivir and dexamethasone. RESULTS: There were 3,949 COVID-19 admissions, 3,195 hospital discharges and 733 deaths. There were notable differences in age, ethnicity, comorbidities, and admission disease severity between wave 1 and wave 2. Twenty-eight-day mortality was higher during wave 1 (26.1% versus 13.1%). Mortality risk adjusted for co-variates was significantly lower in wave 2 compared to wave 1 [adjSHR 0.49 (0.37, 0.65) p<0.001]. Analysis of treatment impact did not show statistically different effects of remdesivir [HR 0.84 (95%CI 0.65, 1.08), p = 0.17] or dexamethasone [HR 0.97 (95%CI 0.70, 1.35) p = 0.87]. CONCLUSION: There has been substantial improvements in COVID-19 mortality in the second wave, even accounting for demographics, comorbidity, and disease severity. Neither dexamethasone nor remdesivir appeared to be key explanatory factors, although there may be unmeasured confounding present

    Epistasis and genotype-by-environment interaction of grain protein content in durum wheat

    Get PDF
    Parental, F1 , F 2 , BC 1 and BC 2 generations of four crosses involving four cultivars of durum wheat (Triticum durum Desf.) were evaluated at two sites in Tunisia. A three-parameter model was found inadequate for all cases except crosses Chili x Cocorit 71 at site Sidi Thabet and Inrat 69 x Karim at both sites. In most cases a digenic epistatic model was sufficient to explain variation in generation means. Dominance effects (h) and additive x additive epistasis (i) (when significant) were more important than additive (d) effects and other epistatic components. Considering the genotype-by-environment interaction, the non-interactive model (m, d, h, e) was found adequate. Additive variance was higher than environmental variance in three crosses at both sites. The estimated values of narrow-sense heritability were dependent upon the cross and the sites and were 0%-85%. The results indicate that appropriate choice of environment and selection in later generations would increase grain protein content in durum wheat

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+e−e^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years
    corecore